
Welcome
bbaacckk

to CS429H!

Week 8

Ed meme recap:

Questions on lecture content?
(Please no cats today)

Drawing Wires For Quiz How-To

One wire crossing
over a different wire.

All of these wires
have the same value.

Getting the lower
order 4 bits from a

wire, etc.

Quiz everyone say CHEESE!

Poll
Channel *feedback = go(quiz);
Value v = receive(feedback);

How was the quiz?

A. easy

B. mostly fine

C. mostly fine, but not enough time

D. too hard, but finished mostly in

time

E. too hard and not enough time

F. too hard regardless of time

Stress
● 429H is not an easy class

○ Lots of new materials
○ Unfamiliar programming environments
○ Fast, often relentless pace

● Struggling in this course is normal
○ There will be times you won’t know the answer of the solution
○ This is expected—we want we everyone to succeed, but the only way we can help is if you ask for it

● If you find yourself overly overwhelmed or spending more time on this class than
you think you should be, please reach out to Dr. Gheith or the TAs
○ We can help out as far as the class goes
○ We can provide other resources where we are not able to help

Mental health resource available at UT

https://cmhc.utexas.edu/

P7

Poll
How’s your status on P7?

A. What’s P7?

B. I’ve heard of it

C. I’ve cloned the starter code

and/or looked through it

D. I’ve started planning/writing

code

E. I’m mostly done but might still

have bugs

F. P7 any% speedrun

Verilog
● Verilog is a Hardware Description Language (HDL), NOT a programming

language
○ There are no if statements (well, there are, but they don’t always work like those in a PL)

○ Every line of “code” is run in parallel

○ HDL is split up into two “sections”: continual and procedural assignment

But First… What is a wire?

D Q +1 D Q

D Q

D Q

rA

rB

rC

rD

x

y

But First… What is a wire?

D Q +1 D Q

D Q

D Q

rA

rB

rC

rD

x

y

How many “inputs” does x have?
How many “outputs” does x have?

But First… What is a wire?
There can only be 1 driver of a wire
But anybody can read that wire’s value!

A wire with no driver is undefined

A wire with 2 drivers is undefined

+1

D Q

D Q

How do we represent this circuit in Verilog?
● Verilog is split into continuous and procedural assignment blocks.

● An “always” or “initial” starts a procedural block; otherwise, you’re in a

continuous block.

Continuous Block
● where you declare wires and registers

● where you assign wires

● assignments constantly updated

wire x;

wire [1:0] y;

reg [1:0] rA;

assign x = rA;

● where you assign registers

● updated only on clock tick

always @(posedge clk) begin

 rB <= x;

end

// begin is a {, end is a }

Procedural Block

Continuous Block
● Only use =, <= is a syntax error

● Always declare wires/regs as [x:0], not [0:x]

● Only use <=, NEVER USE =
● Only use always @(posedge clk), don’t use

negedge or other things in the @()
● Every line is run at the same time, so you

can swap values like this:

always @(posedge clk) begin

rA <= rB;

rB <= rA;

end

Procedural Block
Style Guide

Let’s Translate This Circuit!
reg [31:0] rA;

reg [31:0] rB;

reg [31:0] rC;

reg [31:0] rD;

wire [31:0] x;

wire [31:0] y;

D Q +1 D Q

D Q

D Q

rA

rB

rC

rD

x

y

Let’s Translate This Circuit!
reg [31:0] rA;

reg [31:0] rB;

reg [31:0] rC;

reg [31:0] rD;

wire [31:0] x;

wire [31:0] y;

D Q +1 D Q

D Q

D Q

rA

rB

rC

rD

x

yassign x = rA;

assign y = x + 1;

Let’s Translate This Circuit!
reg [31:0] rA;

reg [31:0] rB;

reg [31:0] rC;

reg [31:0] rD;

wire [31:0] x;

wire [31:0] y;

D Q +1 D Q

D Q

D Q

rA

rB

rC

rD

x

yassign x = rA;

assign y = x + 1;

always @(posedge clk) begin

rA <= y;

rB <= x;

rC <= y;

rD <= y;

end

We don’t actually need wires…
reg [31:0] rA;

reg [31:0] rB;

reg [31:0] rC;

reg [31:0] rD;

D Q +1 D Q

D Q

D Q

rA

rB

rC

rD

x

y

always @(posedge clk) begin

rA <= rA + 1;

rB <= rA;

rC <= rA + 1;

rD <= rA + 1;

end

Initial Values?
reg [31:0] rA;

reg [31:0] rB;

reg [31:0] rC;

reg [31:0] rD;

wire [31:0] x;

wire [31:0] y;

D Q +1 D Q

D Q

D Q

rA

rB

rC

rD

x

y

Initial Values?
reg [31:0] rA = 0; // assigns 0 to rA on startup

reg [31:0] rB = 0;

reg [31:0] rC = 0;

reg [31:0] rD = 0;

wire [31:0] x = 0; // this is bad

wire [31:0] y = 0; // and equivalent to: assign y = 0

D Q +1 D Q

D Q

D Q

rA

rB

rC

rD

x

y

Initial Values?
reg [31:0] rA = 0; // assigns 0 to rA on startup

reg [31:0] rB = 0;

reg [31:0] rC = 0;

reg [31:0] rD = 0;

wire [31:0] x = rA; // this is ok instead of writing a separate assign

wire [31:0] y = x + 1;

D Q +1 D Q

D Q

D Q

rA

rB

rC

rD

x

y

What are all these X’s?
wire [2:0] hi = {0,1}; // hi[0] = 1, hi[1] = 0, but what is hi[2]?

initial $display(“%d”, hi[2]); // displays x

x is “undefined” and it propagates throughout the pipeline, but it doesn’t mean error!

It’s OK to have wires/regs undefined, as long as you don’t use them to make decisions

No IF Statements?
reg a, b, c;

wire x;

if (a == 1) // error: no IF statements allowed in continuous blocks

assign x = b; // because an assignment is a permanent description of what a wire is

else

assign x = c; // how do we fix this bug?

No IF Statements?
reg a, b, c;

wire x;

assign x = (a == 1) ? b : c;

No IF Statements?
reg a, b, c;

wire x;

assign x = c1 ? a :

 c2 ? b :

c3 ? c :

d;

You can use if statements in procedural blocks
always @(posedge clk) begin

if (!stall) begin

f1_pc <= f0_pc;

end

end

// question: what if there is a stall? what does f1_pc get set to?

Or ternaries work there too
always @(posedge clk) begin

f1_pc <= stall ? f1_pc : f0_pc;

end

Verilog Literals
wire x = 1; // warning: 1 is a 32 bit value being assigned to a 1 bit wire

// solution:

wire y = 1’b1;

// general form: width’{b,d,h}number

// eg: a 64-bit 0x20 is 64’h20 or 64’d32

// a 2-bit 3 is 2’b11 or 2’d3 or 2’h3

// a 16-bit undefined value is 16’bX

Verilog Modules
module mem(input clk,

 input [15:1]raddr0_, output [15:0]rdata0_,

 input [15:1]raddr1_, output [15:0]rdata1_,

 input wen, input [15:1]waddr, input [15:0]wdata);

It’s just a box!

The starter code instantiates it for you—you need to provide wires that will connect to raddr0_, rdata0_, etc.

input = caller should drive wire
output = module will drive wire

mem

raddr0_

raddr1_

rdata0_

rdata1_

clk

wen
waddr
wdata

.hex files
Broken test case!

@0
86
80
86
50
86
c0
86
c0
86
f0
80
a0
ff
ff

.hex files
Bad test case!

@0
8680
8650
86c0
86c0
86f0
80a0
ffff

.hex files
Better test case. USE COMMENTS!

@0
8680 // movl r0, ‘h’
8650 // movl r0, ‘e’
86c0 // movl r0, ‘l’
86c0 // movl r0, ‘l’
86f0 // movl r0, ‘o’
80a0 // movl r0, ‘\n’
ffff // invalid

Part of your test grade case reflects how helpful it is to others. Hex digits are not
very useful to others

.hex files
Better test case. USE COMMENTS!

@0
8680 // movl r0, ‘h’ Each line is a 16-bit entry in memory
8650 // movl r0, ‘e’ a.k.a. 4 hex digits
86c0 // movl r0, ‘l’ Each instruction is also 16 bits
86c0 // movl r0, ‘l’ 0x8680 = 0b1000011010000000
86f0 // movl r0, ‘o’ movl 104 = ‘h’ r0
80a0 // movl r0, ‘\n’
ffff // invalid

Part of your test grade case reflects how helpful it is to others. Hex digits are not
very useful to others

README Correction
<test name>.raw => the raw output from running the test

<test name>.out => lines from *.raw that start with #

<test name>.cycles => number of cycles needed to run the test

<test name>.vcd => vcd file after running test

<test name>.ok => expected output

<test name>.hex => the test program

README Correction
<test name>.raw => the raw output from running the test

<test name>.out => lines from *.raw that start with # lines from *.raw which are not

“VCD info: dumpfile cpu.vcd opened for output”

<test name>.cycles => number of cycles needed to run the test

<test name>.vcd => vcd file after running test

<test name>.ok => expected output

<test name>.hex => the test program

Tips
● Follow the style guide
● Follow the style guide
● Don’t $display debug
● Add -Wall to the iverilog compile options
● Don’t touch verilog functions unless you know what you’re doing
● Ignore hazards, flushing, stalling etc. to start, and slowly add those in
● Use good wire & reg naming conventions (know which things are inputs to your stage

and what are outputs)
● Clearly mark and separate each stage with some consistent convention
● You can use multiple procedural blocks
● Your test case (a .hex file) MUST HAVE COMMENTS

○ It is fine to share assemblers/disassemblers, but your test case should be pretty understandable without
having to use a disassembler

Set Up X Forwarding
X Forwarding is how we can run software remotely on a lab machine while
displaying the graphics to our local machine! Instructions for setting up X
Forwarding posted on Ed!

Once you’ve set it up, you SSH into a lab machine like this:

ssh -X <csid>@<hostname>.cs.utexas.edu

And then you can run fun programs!

xeyes

~jocelyn/public/oneko

Set Up X Forwarding
X Forwarding is how we can run software remotely on a lab machine while
displaying the graphics to our local machine! Instructions for setting up X
Forwarding posted on Ed!

Once you’ve set it up, you SSH into a lab machine like this:

ssh -X <csid>@<hostname>.cs.utexas.edu

And then you can run fun programs!

xeyes

~jocelyn/public/oneko

gtkwave

gtkwave

gtkwave final_project.vcd

More Advice

some advice for debugging
- check that there are no blocking statements in your always blocks

- all always blocks should be @ (posedge clk)
- this excludes the clock module

- you will get a 0 if you do not follow this

- if you have an if statement in an always block, are you updating the same set of

registers in both the if and the else? If not, is it intentional?

- are you updating the same register in multiple locations?

- the memory and register modules cannot stall

- a correct implementation that flushes on every hazard will get more
correctness points than an incorrect implementation that attempts stalling

Writing Verilog
● Write a little bit of good code - debugging is hard so try to get it right on the first try

● Have a clear naming convention - is execute_pc the output of or input to execute?

● Reuse wires as much as reasonably possible - don’t have immediate wires for each

instruction variant

● Clearly separate stages - don’t have intermixed code

● Recommended vscode extension

https://marketplace.visualstudio.com/items?itemName=mshr-h.VerilogHDL

Stage contracts
● The hard part of pipelining is the communication between stages - not the stages

themselves
● Without hazards, it’s quite simple - input comes in, one cycle later output is ready
● But with hazards, things are no longer clear
● When the flush wire goes high for a cycle, does that immediately invalidate the output

or does it take a cycle? When fetch receives a new PC, how many cycles till the
instruction is ready? When a module has to stall, exactly which stall wires does it set
and for how long?

● Treat stages as independent components - they only connect through wires defined in
your contract

Debugging
● Don’t use print statements, you’ll get too much output

● DO NOT USE THE VSCODE WAVETRACE EXTENSION IT IS BUGGED (as of last year,

and has not been updated since then so is still broken)

● GTKWave is vastly superior and is the only reasonable way to debug verilog

● X-forwarding works really well, just ssh with -X and launch gtkwave (use WSL on

Windows 11)

● Add all the important wires for each stage, group them (press G), and optionally color

code them

● Then make sure to save your layout, gtkwave will not remind you to save

● Searching for a value - select the wire you want to search, then search>pattern search

1>dropdown to “string”>plug in value>find next

● Right click on a signal, change the data format

Verilog Resources
● https://github.com/steveicarus/iverilog

● A Verilog Primer
○ Just note to use @(posedge clk) not @(*) in your code

https://github.com/steveicarus/iverilog
https://inst.eecs.berkeley.edu/~eecs151/fa20/files/verilog/Verilog_Primer_Slides.pdf

Questions?

 oooo$$$$$$$$$$$$oooo
 oo$$$$$$$$$$$$$$$$$$$$$$$$o
 oo$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$o o$ $$ o$
 o $ oo o$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$o $$ $$ $$o$
 oo $ $ "$ o$$$$$$$$$ $$$$$$$$$$$$$ $$$$$$$$$o $$$o$$o$
 "$$$$$$o$ o$$$$$$$$$ $$$$$$$$$$$ $$$$$$$$$$o $$$$$$$$
 $$$$$$$ $$$$$$$$$$$ $$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$
 $$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$ $$$$$$$$$$$$$$ """$$$
 "$$$""""$$$ "$$$
 $$$ o$$ "$$$o
 o$$" $$$ $$$o
 $$$ $$$" "$$$$$$ooooo$$$$o
 o$$$oooo$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ o$$$$$$$$$$$$$$$$$
 $$$$$$$$"$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$""""""""
 """" $$$$ "$$$$$$$$$$$$$$$$$$$$$$$$$$$$" o$$$
 "$$$o """$$$$$$$$$$$$$$$$$$"$$" $$$
 $$$o "$$""$$$$$$"""" o$$$
 $$$$o o$$$"
 "$$$$o o$$$$$$o"$$$$o o$$$$
 "$$$$$oo ""$$$$o$$$$$o o$$$$""
 ""$$$$$oooo "$$$o$$$$$$$$$"""
 ""$$$$$$$oo $$$$$$$$$$
 """"$$$$$$$$$$$
 $$$$$$$$$$$$
 $$$$$$$$$$"
 "$$$""""

